Kajian Model Pembelajaran SAVI Terhadap Mathematical Connections Ability
Sari
Mathematical connection is one of the abilities that is the goal of learning mathematics. Mathematical connections occur between mathematics and mathematics itself or between mathematics outside mathematics and between mathematics and everyday life. With the ability to connect mathematics, in addition to understanding the benefits of mathematics, students are able to see that mathematical topics are interrelated. Mathematical Connections Ability is important but students who master mathematical concepts are not necessarily smart in connecting mathematics. The SAVI learning model involves activities and connections of the body and the five senses, so that the learning that is carried out gives an effective and efficient impact on classroom management to be better. Students' memories of the material learned are stronger because students build their own knowledge of mathematical concepts and are able to connect the knowledge formed.
Keywords: Mathematics, SAVI, Learning, Students
Teks Lengkap:
PDFReferensi
Atun dan Isrok. 2018. Model – model pemeblajaran Matematika. Jakarta : PT Bumi aksara.
Bell, F. H. (1978). Teaching and Learning Mathematics in Secondary School. Cetakan Kedua. Dubuque, Iowa: Wm. C. Brown Company Publishers.
Bergeson, T. (2000). Teaching and Learning Mathematics: Using Research to Shift From The “Yesterday” Mind to the “Tomorrow” Mind. Tersedia di www.k12.wa.us.
Bruner, J. S. (1971). Toward a theory of instruction. Massachusetts: The Belknap. Press
Cuoco, A.A., Goldenberg, E.P., Mark, J. (1995). Connecting Geometry with the Rest of Mathematics, dalam Connecting Mathematics across the Curriculum. Editor: House, P.A. dan Coxford, A.F. Reston, Virginia: NCTM
Primayana, K. H. (2020). Menciptakan Pembelajaran Berbasis Pemecahan Masalah Dengan Berorientasi Pembentukan Karakter Untuk Mencapai Tujuan Higher Order Thingking Skilss (HOTS) Pada Anak Sekolah Dasar. Purwadita: Jurnal Agama dan Budaya, 3(2), 85-92.
Winia, I. N., Harsananda, H., Maheswari, P. D., Juniartha, M. G., & Primayana, K. H. (2020). Building The Youths Characters Through Strengthening Of Hindu Religious Education. Vidyottama Sanatana: International Journal of Hindu Science and Religious Studies, 4(1), 119-125.
Primayana, K. H., Lasmawan, I. W., & Adnyana, P. B. (2019). PENGARUH MODEL PEMBELAJARAN KONTEKSTUAL BERBASIS LINGKUNGAN TERHADAP HASIL BELAJAR IPA DITINJAU DARI MINAT OUTDOOR PADA SISWA KELAS IV. Jurnal Pendidikan dan Pembelajaran IPA Indonesia, 9(2), 72-79.
Dewi, P. Y. A., & Primayana, K. H. (2019). PERANAN TOTAL QUALITY MANAGEMENT (TQM) DI SEKOLAH DASAR. Jurnal Penjaminan Mutu, 5(2), 226-236.
Primayana, K. H. (2020, March). Perencanaan Pembelajaran Pendidikan Anak Usia Dini Dalam Menghadapi Tantangan Revolusi Industri 4.0. In Prosiding Seminar Nasional Dharma Acarya (Vol. 1, No. 3, pp. 321-328).
Dave, Meier. 2000. The Accelerated, A Creative Guide to Designing and Delevering Faster, More Effective Training Programs. New York : McGraw-Hill.
Depdiknas .2003. Undang-undang RI No.20 tahun 2003.tentang sistem pendidikan nasional.
Depdiknas, (2006). Kurikulum Tingkat Satuan Pendidikan. Jakarta : Depdiknas
Hadi, S. dan Fauzan, A. (2003). Mengapa PMRI? Dalam Buletin PMRI (Pendidikan Matematika Realistik Indonesia) edisi I, Juni 2003.
Hodgson, T. (1995). Connections as Problem-Solving Tools, dalam Connecting Mathematics across the Curriculum. Editor: House, P.A. dan Coxford, A.F. Reston, Virginia: NCTM
Huda Miftahul. 2013.Model – Model Pengajaran dan Pembelajaran.Yogyakarta : Pustaka Pelajar.
Jihad, A. (2008). Pengembangan Kurikulum Matematika (Tinjauan Teoritis dan Historis). Bandung: Multipressindo.
Johnson, E. B. (2010). Contextual Teaching and Learning: Menjadikan Kegiatan Belajar Mengajar Mengasyikan dan Bermakna. Bandung: Kaifa.
Johnson, K.M. dan Litynsky, C.L. (1995). Breathing Life into Mathematics, dalam Connecting Mathematics across the Curriculum. Editor: House, P.A. dan Coxford, A.F. Reston, Virginia: NCTM.
Lestari dan Yudhanegara. Penelitian Pendidikan Matematika. Bandung : PT Refika Aditama.
Meier, D. (2002). The Acceleratet learning hand book. Panduan Kreatif dan Efektif Merancang Program pendidikan dan penelitian. Terjemahan. Bandung: Kaifa.
NCTM. (2000). Priciples and Standards for School Mathematics. RestonVA: NCTM.
Suardipa, I. P. 2020. Kajian Creative Thinking Matematis Dalam Inovasi Pembelajaran. Purwadita: Jurnal Agama dan Budaya, 3(2), 15-22
Suherman, dkk. (2003). Strategi Pembelajaran Matematika Kontemporer (Edisi Revisi). Bandung: JICA UPI.
Sumarmo, Utari. 2010. Berpikir dan Disposisi Matematik: Apa, Mengapa, dan Bagaimana Dikembangkan pada Peserta Didik. Artikel pada FPMIPA UPI Bandung.
DOI: https://doi.org/10.55115/edukasi.v1i1.522
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
##submission.license.cc.by-sa4.footer##
Edukasi: Jurnal Pendidikan Dasar
ISSN 2722-5224 (Online) 2721-3935 (Printed)
Published by Sekolah Tinggi Agama Hindu Negeri Mpu Kuturan Singaraja
W : http://jurnal.stahnmpukuturan.ac.id/index.php/edukasi
E : anggadewiyulia@stahnmpukuturan.ac.id
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.